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Single exposures and cancer risk: standard approaches
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Comunità, Università degli Studi di Milano, via A. Vanzetti, 5, 20133 Milano, Italy; 2Division of Public Health, Department of
Family & Preventive Medicine and Huntsman Cancer Institute, University of Utah School of Medicine, 375 Chipeta Way,
Salt Lake City, UT 84108, USA; 3Department of Medical and Biological Sciences, University of Udine, Piazzale M. Kolbe, 4, 33100
Udine, Italy; 4S. C. Statistica Medica, Biometria e Bioinformatica, Fondazione IRCSS Istituto Nazionale Tumori di Milano,
via A. Vanzetti, 5, 20133, Milano, Italy; 5Epidemiology and Biostatistics Unit, CRO Aviano National Cancer Institute, IRCCS,
via F. Gallini, 2, 33081 Aviano (PN), Italy; 6Department of Preventive Medicine, Faculty of Medical Sciences, Kyushu University,
3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan; 7University of North Carolina School of Public Health, Chapel Hill, NC,
USA; 8Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, 170 Manning Drive,
Campus Box 7070, Chapel Hill, NC 27599-7070, USA; 9Division of Cancer Control and Population Sciences, National Cancer
Institute, 9609 Medical Center Drive, Bethesda, MD 20892-9764, USA; 10Roswell Park Cancer Institute, Buffalo, NY, USA;
11Department of Epidemiology, UCLA School of Public Health, 71-225 CHS, Box 951772, Los Angeles, CA 90095-1772, USA;
12Departments of Epidemiology and Environmental Health Sciences, School of Public Health and Comprehensive Cancer
Center, University of Michigan, Ann Arbor, MI, USA; 13Institute of Social and Preventive Medicine (IUMSP), Lausanne University
Hospital (CHUV), Route de la Corniche 10, 1010 Lausanne, Switzerland; 14Department of Pathology and Laboratory Medicine,
Brown University, 70 Ship Street, G-E5, Providence, RI 02912, USA; 15Department of Environmental Health, Boston University
School of Public Health, 715 Albany Street, Talbot 4W, Boston, MA 02118, USA; 16Department of Epidemiology, IRCCS–Istituto
di Ricerche Farmacologiche Mario Negri, via G. La Masa, 19, 20156 Milano, Italy; 17Department of Otolaryngology, New York
Eye and Ear Infirmary, 310 E 14th Street, New York, NY 10003, USA; 18Medical Informatics Center, Peking University, Peking,
China; 19The Tisch Cancer Institute and Institute of Translational Epidemiology, Icahn School of Medicine at Mount Sinai, 1425
Madison Avenue, New York, NY 10029, USA; 20Institute of Population Health Sciences, National Health Research Institutes,
Zhunan, Miaoli County, Taiwan and 21Division of Public Health, Department of Family & Preventive Medicine, University of Utah
School of Medicine, 375 Chipeta Way, Salt Lake City, UT 84108, USA

Background: Evidence for the possible effect of vitamin E on head and neck cancers (HNCs) is limited.

Methods: We used individual-level pooled data from 10 case–control studies (5959 cases and 12 248 controls) participating in the
International Head and Neck Cancer Epidemiology (INHANCE) consortium to assess the association between vitamin E
intake from natural sources and cancer of the oral cavity/pharynx and larynx. Adjusted odds ratios (ORs) and 95% confidence
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between studies¼ 0.011), whereas for laryngeal cancer we reported
the fixed-effects ones (P-value for heterogeneity between
studies¼ 0.464). Vitamin E intake was inversely related to oral
and pharyngeal cancer, with an OR of 0.59 (95% CI: 0.49–0.71) for
the fifth quintile compared with the first one (P-value for trend
o0.001). Similarly, the OR for laryngeal cancer was 0.67 (95% CI:
0.54–0.83) for the highest quintile category, with a P-value for
trend o0.001.

Decreasing ORs with higher intakes of vitamin E were observed
across oral and pharyngeal cancer subsites: OR¼ 0.48 (95% CI:
0.34–0.66) for oral cavity, OR¼ 0.63 (95% CI: 0.53–0.75) for
oropharynx and hypopharynx combined and OR¼ 0.57 (95% CI:
0.41–0.78) for oral cavity or pharynx not otherwise specified

(Supplementary Table 2). The ORs for the oropharynx were similar
to those of the hypopharynx site (for instance, for the fifth vs the
first quintile category, OR¼ 0.66, 95% CI: 0.60–0.80 and
OR¼ 0.62, 95% CI: 0.47–0.83, respectively) (data not shown)
but, given the limited number of hypopharyngeal cancer cases, we
decided to combine the results of these subsites.

Table 4 shows the ORs of oral and pharyngeal cancer in strata of
selected variables. No appreciable heterogeneity was detected for
vitamin E intake across strata, with consistent inverse associations
for the third quintile category onwards for all the examined strata.
However, in strata of tobacco consumption, a more marked
protective association was evident for current smokers in the
second and third quintile categories, as compared with non/ex-
smokers (P-value for heterogeneity across strata o0.001). An
appreciable heterogeneity between studies was found for several
strata.

Table 5 shows the ORs of laryngeal cancer in strata of selected
variables. No appreciable heterogeneity was found for vitamin E
intake across strata. An indication of a stronger protective
association was evident in the highest quintile category for subjects
living in Europe, as compared with those living in the United States
or Asia. No appreciable heterogeneity was found between studies
in most of the strata.

In the interaction analyses including one extra nutrient among
the selected ones (saturated fats, monounsaturated fatty acids,
polyunsaturated fatty acids, lutein plus xeaxanthin, total carote-
noids, betacarotene equivalents, cryptoxanthin, lycopene and
vitamin C) or total fruits/total vegetables or supplement use of
vitamin E, no appreciable interaction effect was found between the
additional covariate under examination and natural vitamin E for
either cancer site.

In the sensitivity analyses including one extra nutrient at a time,
likelihood ratio tests pointed to introduce the extra adjustment in
the model for eight out of the nine selected nutrients for oral and

Table 1. ( Continued )

Oral and
pharyngeal

cases (%) Controls (%)
Laryngeal

cases (%) Controls (%)
Duration of cigarette smoking (years)
Never smoker 806 18.3 4868 39.7 91 5.9 4868 39.7
40 to p20 443 10.0 2166 17.7 102 6.6 2166 17.7
420 3132 71.0 5123 41.8 1343 86.9 5123 41.8
Missing 33 0.7 91 0.7 9 0.6 91 0.7

w2 (P-value)a 1116.8 (o0.001) 1133.7 (o0.001)

Cigar smoking
Never cigar user 3583 81.2 8545 69.8 1323 85.6 8545 69.8
Ever smoked X100 cigars in a
lifetime

394 8.9 636 5.2 118 7.6 636 5.2

Missing 437 9.9 3067 25.0 104 6.7 3067 25.0

w2 (P-value)a 33.7 (0.008) 2.8 (0.093)

Pipe smoking
Never pipe user 3579 81.1 8327 68.0 1325 85.8 8327 68.0
Ever smoked X100 pipes in a
lifetime

399 9.0 864 7.1 115 7.4 864 7.1

Missing 436 9.9 3057 25.0 105 6.8 3057 25.0

w2 (P-value)a 1.2 (0.027) 2.8 (0.094)

Alcohol consumption (drinks per day)
Never drinker 548 12.4 3156 25.8 187 12.1 3156 25.8
o1 1030 23.3 4022 32.8 250 16.2 4022 32.8
X1 to 3 973 22.0 2934 24.0 344 22.3 2934 24.0
X3 to 5 647 14.7 1215 9.9 250 16.2 1215 9.9
X5 1216 27.5 921 7.5 514 33.3 921 7.5

w2 (P-value)a 1442.0 (o0.001) 1155.2 (o0.001)

Abbreviation: MSKCC¼Memorial Sloan Kettering Cancer Center.
aMissing values were not considered in the calculation of the w2 test.

Table 2. Descriptive statistics on raw values of vitamin E
intake (mg per day) across studies and in all the studies
combined (International Head and Neck Cancer
Epidemiology (INHANCE) consortium)

Study name 20% Median Mean 80%
Boston 5.37 7.91 9.00 11.58

Buffalo 4.47 6.90 7.78 10.45

Italy Multicenter 10.16 14.08 15.17 19.31

Japan (2001–2005) 6.08 7.42 7.77 9.26

Los Angeles 4.46 6.50 7.51 9.42

Milan (2006–2009) 8.85 11.98 12.76 16.41

MSKCC 5.05 7.22 8.84 11.34

North Carolina (2002–2006) 4.95 7.29 8.04 10.64

Switzerland 9.73 12.90 13.49 16.84

US Multicenter 3.43 4.60 4.88 6.21

All studies combined 5.37 8.30 9.73 13.48

Abbreviation: MSKCC¼Memorial Sloan Kettering Cancer Center.
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Table 3. Odds ratios (ORs)a of oral and pharyngeal combined and laryngeal cancers and corresponding confidence intervals (95%
CIs) on vitamin E intake quintile categories (International Head and Neck Cancer Epidemiology (INHANCE) consortium)

Oral and
pharyngeal cases Controls OR (95% CI)b Pstudies

c
Laryngeal

cases Controls OR (95% CI)b Pstudies
c

I Quintile 976 1479 1 (Reference) 0.011 315 1479 1 (Reference) 0.464

II Quintile 788 1832 0.79 (0.69–0.90) 280 1832 0.94 (0.76–1.16)

III Quintile 704 1944 0.65 (0.56–0.74) 248 1944 0.75 (0.60–0.93)

IV Quintile 707 1922 0.64 (0.55–0.74) 298 1922 0.93 (0.75–1.14)

V Quintile 719 1819 0.59 (0.49–0.71) 261 1819 0.67 (0.54–0.83)

Pfor linear trend o0.001 o0.001
aEstimated from multiple logistic regression models adjusted for age, sex, education, race/ethnicity, study centre, cigarette smoking status, cigarette intensity, cigarette duration, cigar smoking
status, pipe smoking status, alcohol drinking intensity and an interaction term between cigarette intensity and alcohol drinking intensity.
bFor the oral and pharyngeal cancer, heterogeneity between studies was detected (Po0.1) and we reported the mixed-effects estimates derived from the corresponding generalised linear
mixed model; for laryngeal cancer, there was no appreciable heterogeneity between studies and we reported the fixed-effects estimates.
cP for heterogeneity between studies.

Table 4. Odds ratios (ORs)a,b of oral and pharyngeal cancers combined and corresponding confidence intervals (95% CIs) on vitamin E
intake quintile categories in strata of selected covariates (International Head and Neck Cancer Epidemiology (INHANCE) consortium)

II Quintile III Quintile IV Quintile V Quintile
OR (95% CI) OR (95% CI) OR (95% CI) OR (95% CI) Pstudies

c

Age (years)
o55 0.74 (0.59–0.93) 0.61 (0.47–0.78) 0.67 (0.53–0.84) 0.67 (0.50–0.90) 0.006
X55 0.80 (0.68–0.95) 0.66 (0.56–0.78) 0.61 (0.51–0.75) 0.56 (0.43–0.72) 0.004

Pstrata
d 0.739

Sex
Female 0.87 (0.66–1.16) 0.61 (0.46–0.81) 0.61 (0.46–0.81) 0.72 (0.53–0.99) 0.007
Male 0.77 (0.66–0.90) 0.67 (0.57–0.80) 0.67 (0.57–0.79) 0.54 (0.43–0.68) 0.109

Pstrata
d 0.114

Education
pHigh school graduate 0.80 (0.67–0.95) 0.65 (0.52–0.80) 0.66 (0.55–0.79) 0.54 (0.41–0.71) 0.010
XSome college 0.74 (0.60–0.91) 0.65 (0.53–0.80) 0.64 (0.52–0.79) 0.68 (0.55–0.85) 0.170

Pstrata
d 0.587

Geographic regione

Europe 0.78 (0.62–0.99) 0.57 (0.44–0.74) 0.68 (0.46–1.01) 0.51 (0.31–0.83) o0.001
America 0.77 (0.66–0.91) 0.69 (0.58–0.81) 0.63 (0.53–0.74) 0.63 (0.52–0.76) 0.393
Asia 0.66 (0.48–0.92) 0.62 (0.45–0.86) 0.60 (0.43–0.84) 0.47 (0.33–0.65) NE

Pstrata
d 0.322

Body mass index
o25 kg m! 2 0.76 (0.63–0.93) 0.59 (0.48–0.73) 0.64 (0.53–0.79) 0.55 (0.44–0.69) 0.321
X25 kg m! 2 0.79 (0.65–0.95) 0.72 (0.57–0.89) 0.68 (0.56–0.83) 0.67 (0.53–0.84) 0.030

Pstrata
d 0.434

Tobacco consumption
Never user 1.00 (0.75–1.32) 0.77 (0.57–1.04) 0.65 (0.47–0.88) 0.58 (0.42–0.80) 0.697
Former user 0.96 (0.74–1.23) 0.76 (0.59–0.98) 0.72 (0.55–0.94) 0.68 (0.52–0.89) 0.295
Current user 0.62 (0.50–0.76) 0.52 (0.42–0.64) 0.61 (0.50–0.76) 0.58 (0.47–0.72) 0.115

Pstrata
d o0.001

Alcohol consumptionf

Never/light drinker 0.88 (0.72–1.07) 0.71 (0.58–0.88) 0.79 (0.64–0.96) 0.72 (0.57–0.90) 0.225
Moderate drinker 0.70 (0.54–0.90) 0.63 (0.50–0.79) 0.59 (0.47–0.75) 0.58 (0.42–0.78) 0.008
Heavy drinker 0.71 (0.50–1.01) 0.55 (0.38–0.79) 0.47 (0.32–0.69) 0.43 (0.31–0.59) 0.104

Pstrata
d 0.414

Abbreviation: NE¼ not estimable.
aEstimated from multiple logistic regression models adjusted for age, sex, education, race/ethnicity, study centre, cigarette smoking status, cigarette intensity, cigarette duration, cigar smoking
status, pipe smoking status, alcohol drinking intensity and an interaction term between cigarette intensity and alcohol drinking intensity, when appropriate.
bThe I quintile category was considered as the reference one.
cP for heterogeneity between studies. When the P-value was o0.1 within strata, we reported mixed-effects estimates derived from the corresponding generalised linear mixed model.
dP for heterogeneity across strata. When fixed- and mixed-effects models were estimated for different categories of the same stratification variable, likelihood ratio tests for heterogeneity
across strata had to be based on comparable mixed-effects models and therefore we re-fitted one or more mixed-effects models to replace the original fixed-effects ones. We consistently
reported the corresponding stratum-specific mixed-effects models instead of the fixed-effects ones.
eEurope included Italy Multicenter, Switzerland and Milan (2006–2009) studies. North America included Boston, Buffalo, Los Angeles, Memorial Sloan Kettering Cancer Center (MSKCC), North
Carolina (2002–2006), and US Multicenter studies. Asia included Japan study only. As Asia included Japan study only, there was no possibility to assess heterogeneity between studies in the
Asia stratum.
fThe never/light drinker category included never drinkers and subjects who drink o1 drink per day; the moderate drinker category included subjects drinking between 1 (included) and 5 drinks
per day; the heavy drinker category included subjects drinking X5 drinks per day.
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Single exposures and cancer risk: nonlinearities

Zucchetto et al, 2009). Cases were 454 women (median age 60
years, range 18–79 years) with histologically confirmed endome-
trial cancer and no previous history of cancer; those diagnosed less
than 1 year before recruitment were eligible. Controls were 908
women (median age 61 years, range 19–79 years) admitted to the
same network of hospitals of cases for a wide spectrum of non-
neoplastic, acute illnesses. Women with a history of hysterectomy
or admitted for gynaecological or hormone-related conditions
were not eligible as controls. The reasons for hospital admission
among controls were trauma (36%), orthopaedic diseases (32%),
acute surgical conditions (9%), and other illnesses (eye, nose, ear,
skin, or dental disorders, 23%). Cases and controls were frequency
matched on study centre and 5-year age, with a 1 : 2 ratio.

Centrally trained staff interviewed eligible women during their
hospital stay. Less than 5% of the approached cases and controls
refused the interview. The response rates were similar across
hospitals and geographic areas. All interviews were conducted
using a structured questionnaire, which included information on
age, education and other socioeconomic factors, physical activity,
smoking habit, alcohol intake, a validated food frequency
questionnaire, a problem-oriented medical history, and history

of cancer in first degree relatives. In a detailed section of the
questionnaire, women were asked to report their height and weight
at 1 year before cancer diagnosis or interview (for controls; referred
to, for brevity, as measures at diagnosis), weight at age 30 and 50
years, lifelong highest and lowest weight, and perceived body size at
age 12 years (i.e., thinner than, same as, heavier than peers). BMI was
computed as weight divided by squared height (kg m!2). The
interviewers measured the circumference of the waist (2 cm above
the umbilicus) and hip (maximal protrusion) at the time of interview
and computed WHR. Waist-to-height ratio (WHtR) was also
computed. Waist or hip could not be measured in 89% of women
interviewed in Milan centre, leading to a lack of information for
WHR and WHtR in 33% of cases and 35% of controls. However, in
the overall study, median BMI in women with a measured WHR was
not substantially different from that in women for whom the
information on WHR or WHtR was missing (26.4 and 26.2,
respectively, among cases and 26.1 and 25.8 among controls).

Table 1 Distribution of 454 endometrial cancer cases and 908 controls
according to selected variables, Italy, 1992–2006

Cases Controls

No. % No. %

Age (years)
o50 67 14.8 134 14.8
50–59 140 30.8 280 30.8
60–69 166 36.6 332 36.6
X70 81 17.8 162 17.8

Study center
Aviano–Pordenone 237 52.2 474 52.2
Milan 140 30.8 280 30.8
Naples 77 17.0 154 17.0

Education (years)
o7 263 57.9 553 60.9
7–11 119 26.2 225 24.8
X12 72 15.9 130 14.3

Smoking status
Never 331 72.9 647 71.3
Current 75 16.5 157 17.3
Former 48 10.6 104 11.5

Age at menarche (years)a

o11 24 5.3 44 4.9
11–13 283 62.6 475 52.7
14–16 137 30.3 345 38.3
X17 8 1.8 38 4.2

Parity
Nulliparous 68 15.0 126 13.9
Parous 386 85.0 782 86.1

Oral contraceptive use
Never 408 89.9 790 87.0
Ever 46 10.1 118 13.0

Hormone replacement therapy
Never 405 89.2 830 91.4
Ever 49 10.8 78 8.6

Menopausal statusa

Pre/peri 85 19.2 174 19.3
Post 358 80.8 726 80.7

aThe sum does not add up to the total because of some missing values.

Table 2 Distribution of 454 endometrial cancer cases and 908 controls,
and corresponding odds ratio (OR) with 95% confidence intervals (CIs)a,
according to body mass index (BMI) at diagnosis and at different ages,b Italy,
1992–2006

Cases Controls

No. (%) No. (%) OR (95% CI)

Height (cm)
o160 152 (33.5) 258 (28.5) 1c

160–164 148 (32.6) 280 (31.0) 0.90 (0.66–1.21)
X165 154 (33.9) 366 (40.5) 0.71 (0.53–0.95)

w2 for trend (P-value) 5.39 (P¼ 0.02)

Weight (kg)
o64 109 (24.0) 355 (39.1) 1c

64–74 145 (31.9) 311 (34.3) 1.51 (1.10–2.06)
X75 200 (44.1) 242 (26.7) 2.71 (1.99–3.70)

w2 for trend (P-value) 40.17 (Po0.01)

Body mass index (kg m!2)
o20 11 (2.4) 58 (6.4) 0.56 (0.27–1.15)
20 to o25 115 (25.3) 355 (39.3) 1c

25 to o30 160 (35.2) 351 (38.8) 1.41 (1.05–1.90)
X30 168 (37.0) 140 (15.5) 4.08 (2.90–5.74)

w2 for trend (P-value) 67.95 (Po0.01)

BMI (kg m!2) 5-Unit increase 1.89 (1.65–2.17)

Perceived body size at age 12 years
Thinner than peers 146 (32.3) 351 (39.1) 1c

Same than peers 173 (38.3) 341 (38.0) 1.12 (0.85–1. 94)
Heavier than peers 133 (29.4) 206 (22.9) 1.45 (1.06–1.98)

w2 trend (P-value) 5.19 (P¼ 0.02)

BMI at age 30 yearsd (kg m!2)
o20 55 (12.6) 179 (21.9) 0.57 (0.40–0.83)
20 to o25 252 (57.8) 473 (57.8) 1c

25 to o30 100 (22.9) 134 (16.4) 1.40 (1.02–1.95)
X30 29 (6.7) 33 (4.0) 1.78 (1.01–3.14)

w2 for trend (P-value) 18.95 (Po0.01)

BMI at age 50 yearse (kg m!2)
o20 7 (1.9) 54 (7.7) 0.39 (0.17–0.91)
20 to o25 138 (37.3) 339 (48.3) 1c

25 to o30 129 (34.9) 223 (31.9) 1.48 (1.08–2.04)
X30 96 (26.0) 84 (12.0) 3.37 (2.26–5.04)

w2 for trend (P-value) 42.33 (Po0.01)

aORs from conditional logistic regression models, conditioned on age and study
centre, adjusted for year of interview, education, smoking status, age at menarche, age
at menopause, oral contraceptive use, parity, and hormone replacement therapy use.
bThe sum does not add up to the total because of some missing values. cReference
category. dWomen X30 years old only. eWomen X50 years old only.
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Anthropometric measures at different ages and
endometrial cancer risk
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BACKGROUND: Endometrial cancer is strongly associated with body mass index (BMI), but the influence of BMI history and of different
types of obesity is uncertain.
METHODS: A case–control study was carried out in Italy including 454 cases and 908 controls admitted to hospital for acute
non-hormone-related conditions. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed using multivariate logistic
and spline regression models.
RESULTS: The OR for BMI 430 at diagnosis compared with 20 to o25 kg m!2 was 4.08 (95% CI: 2.90–5.74). The association for BMI
was monotonic with a possible steeper increase for BMI above 28. Conversely, waist-to-hip ratio (WHR) showed a bell shaped curve
with increased OR (2.10; 95% CI: 1.43–3.09) in the intermediate tertile only. After stratification by BMI at diagnosis, history of weight
loss and BMI at age 30 did not influence endometrial cancer risk. History of obesity in middle age had a weak and not significant
adverse effect among obese women (OR¼ 1.60; 95% CI: 0.52–4.96).
CONCLUSION: The predominant importance of recent weight compared to lifetime history, justifies encouraging weight reduction in
women at any age.
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Endometrial cancer is strongly associated with overweight and
obesity (Levi et al, 1992; La Vecchia et al, 1997; Calle et al, 2003),
which account for 30% (B16 000 new cases per year) of cases among
European women (Renehan et al, 2010). This association reflects the
relationship between adiposity and high levels of unopposed
oestrogens, which derive from increased frequency of anovulatory
cycles (in pre-menopausal women) or the enhanced conversion of
adrenal androgens into oestrogens in adipose tissue (in post-
menopausal women; Key and Pike, 1988; Parazzini et al, 1991). The
excess risk for endometrial cancer increases with age, reflecting the
increasing importance of androgen conversion as ovarian activity
has ceased (Key and Pike, 1988; Parazzini et al, 1991).

Some studies have suggested that, among women of normal
body mass index (BMI) at diagnosis, there is little additional excess
risk of endometrial cancer in relation to history of overweight
(Le Marchand et al, 1991; Levi et al, 1992; Shu et al, 1992;
Swanson et al, 1993; Olson et al, 1995; Terry et al, 1999;
Weiderpass et al, 2000; Schouten et al, 2004; Xu et al, 2005;
Trentham-Dietz et al, 2006; Chang et al, 2007; Friedenreich et al,
2007; WCRF/AICR – World Cancer Research Fund/American
Institute for Cancer Research, 2007; Park et al, 2010). However,

data on the relationship between lifetime changes in BMI and
endometrial cancer risk are limited and difficult to assess because
a monotonic pattern (gradual weight increases during life)
predominates in most studied populations (Le Marchand et al,
1991; Levi et al, 1992; Swanson et al, 1993; Olson et al, 1995;
Xu et al, 2005, 2006; Park et al, 2010). Similarly, there is limited
information on the influence on endometrial cancer risk of
different types of obesity, in particular, waist-to-hip ratio (WHR)
(WCRF/AICR – World Cancer Research Fund/American Institute
for Cancer Research, 2007). In some studies from Europe
(Friedenreich et al, 2007), North America (Austin et al, 1991;
Schapira et al, 1991; Swanson et al, 1993; Goodman et al, 1997),
and China (Shu et al, 1992; Xu et al, 2005), BMI and waist
circumference were stronger predictors of endometrial cancer
risk than WHR, but the issue remains open to discussion.

To further explore these issues, we used data on BMI at different
ages and measures of waist and hip at diagnosis from a
case–control study on endometrial cancer carried out in different
parts of Italy (Zucchetto et al, 2009).

MATERIALS AND METHODS

A case–control study on endometrial cancer was conducted
between 1992 and 2006 in three Italian areas: Pordenone and Milan
in the north and Naples in the south (Lucenteforte et al, 2008;
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(OR vs no decrease in BMI during lifetime¼ 0.96; 95% CI:
0.70– 1.32; data not shown).

Table 3 shows the relationship between waist and hip
circumferences, WHR, and WHtR and endometrial cancer risk.
Significant trends of risk emerged, with the increase of waist
circumference (OR for X96 vs o84 cm: 2.68; 95% CI: 1.78– 4.03),
hip circumference (OR for X109 vs o100 cm¼ 2.49; 95%
CI: 1.66–3.72), and WHtR (OR for X0.59 vs o0.52¼ 3.10; 95%
CI: 2.03– 4.73). No linear trend in risk, however, was observed for
WHR. Compared with the lowest WHR tertile (o0.833), the OR
was 2.10 (95% CI: 1.43– 3.09) in the intermediate tertile but 1.33
(95% CI: 0.89–1.97) in the highest tertile (X0.890).

Table 4 shows the relationship between height, WHR and WHtR,
and endometrial cancer risk in strata of BMI at diagnosis.
The tendency of height to be inversely associated with risk was
restricted to overweight and obese women. An increased risk only
in intermediate tertile of WHR was confirmed within all three BMI
strata. Conversely, a nonsignificant direct association with WHtR
was exclusively observed among normal weight women.

The shapes of the best-fitting regression splines for BMI and
WHR are shown in Figure 1. Reference level was set to the median
values of BMI (23) and WHR (0.79) of the reference categories in
the Tables 2 and 3. The association of endometrial cancer risk with
BMI did not show a lower threshold, was monotonic, and risk
increase was steeper after a BMI of B28 (Figure 1A). Conversely,
the relationship between risk and WHR was bell shaped and the
corresponding OR was greatest for WHR between 0.86 and 0.87
(Figure 1B). When the associations of endometrial cancer risk with
BMI and WHR were examined within strata of women with
different characteristics, no statistically significant heterogeneity
was observed by education, smoking habit, and occupational or
recreational physical activity. However, the association with BMI
was somewhat stronger among post-menopausal women (OR for
BMI X30 vs 20 to o25¼ 4.94; 95% CI: 3.38–7.23) than among
pre- and peri-menopausal women (OR¼ 2.12; 95% CI: 0.92– 4.91),
though this difference was not statistically significant (w2 for
heterogeneity¼ 2.04; P¼ 0.36).

Table 5 shows the association of endometrial cancer risk with
BMI at ages 30 and 50 years within strata of women who had
similar BMI at diagnosis. Some categories of BMI at age 30 and 50
years had to be combined on account of the small numbers
reporting large BMI variations. Among women with BMI o25 at
diagnosis, the OR for BMI X25 vs o25 was 1.24 (95% CI:
0.49– 3.13) and 1.59 (95% CI: 0.71–3.52) at ages 30 and 50 years,
respectively. Among women with BMI X30 at diagnosis, the ORs
were 1.23 (95% CI: 0.54– 2.82) and 1.60 (95% CI: 0.52–4.96) for a
BMI X30 vs o25 at ages 30 and 50 years, respectively.
No association of perceived body size during adolescence and
endometrial cancer emerged after stratification for BMI at
diagnosis (data not shown).

DISCUSSION

Our case– control study confirms the strong relationship between
weight and BMI at diagnosis and endometrial cancer risk,
especially among post-menopausal women. The effect of BMI did
not show a lower threshold: but the risk curve became steeper
among severely overweight women (BMI 428). After adjustment
or stratification by BMI at diagnosis, history of weight loss and
BMI in young adulthood did not influence endometrial cancer risk.
History of obesity in middle age had, however, a weak
nonsignificant adverse effect among obese women aged 50 years
or older. These findings provide indirect support to the possibility
of weight excess acting as late-stage carcinogens (Parazzini et al
1991; La Vecchia et al 1997). Our BMI results are in broad
agreement with previous work and with a meta-analysis that
showed summary risk estimates of 1.52 (95% CI: 1.35–1.72) in

15 cohort studies and 1.56 (95% CI: 1.45– 1.66) in 28 case– control
studies for an increase of 5 BMI units (WCRF/AICR – World
Cancer Research Fund/American Institute for Cancer Research,
2007). The association of BMI with endometrial cancer risk in our
study showed no lower threshold and was nonlinear, in agreement
with the findings of two meta-analyses (Crosbie et al, 2010;
Renehan et al, 2010) that found a highly marked increase in risk
for a BMI above 27.

The relationship between endometrial cancer risk and WHR is
less clear. A meta-analysis of one cohort study and four case–
control studies provided a summary risk estimate of 1.45 (95% CI:
1.00– 2.09) for an increase of 0.1 WHR units (WCRF/AICR – World
Cancer Research Fund/American Institute for Cancer Research,
2007). In the Iowa Women’s Health cohort study (Folsom et al,
2000) and in a case–control study (Goodman et al, 1997), included
in the meta-analysis (WCRF/AICR – World Cancer Research Fund/
American Institute for Cancer Research, 2007), the association
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Figure 1 Estimates of odds ratios and 95% confidence intervals of
endometrial cancer by body mass index at diagnosis (A) and waist-to-hip
ratio (B), using cubic regression splines. Italy, 1992–2006 (Odds ratios from
regression equations include terms for age, study centre, year of interview,
education, smoking status, age at menarche, age at menopause, oral
contraceptives use, parity, and hormone replacement therapy use. Curves
are shown for best-fitting cubic spline regression models according to
Akaike Information Criterion. Dashed lines represent 95% confidence
intervals. Ranges represent the distribution of variables among controls
from 10th to 90th percentile). Reference categories were body mass
index¼ 23 and waist-to-hip ratio¼ 0.79.
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Standard BMI categories (o20, 20 to o25, 25 to o30, and
X30 kg m!2) were used to facilitate comparisons with previous
studies. Tertiles obtained from the combined distribution of cases
and controls were used to assess other anthropometric measures.
A conditional logistic regression model was used to compute odds
ratios (ORs) and the corresponding 95% confidence intervals
(CIs). All analyses were conditioned on age and study centre and
adjusted for calendar period of interview, years of education,
smoking habits, age at menarche and at menopause, parity, and
use of oral contraceptives and hormone replacement therapy.
Additional adjustment for alcohol intake, and occupational and
recreational physical activity did not materially modify the risk
estimates. To avoid potentially arbitrary categorisations, the
‘dose–risk’ relationship between BMI at diagnosis or WHR and
endometrial cancer risk was assessed using logistic cubic
regression splines (Greenland, 1995; Rosenberg et al, 2003;
Dal Maso et al, 2007), and appropriate point-wise CIs were
computed. The optimal number of segments of BMI or WHR was
selected in order to minimise the Akaike information criterion
(Akaike, 1973).

RESULTS

Table 1 shows the distribution of 454 endometrial cancer cases and
908 controls according to matching variables (age and study
centre) and potential confounders. By design, cases and controls
had equal distribution of age and study centre. No association was
found with education or smoking status. Endometrial cancer risk
was inversely associated with age at menarche, parity, and oral
contraceptive use, whereas directly associated with age at
menopause (Zucchetto et al 2009).

The distribution of endometrial cancer cases and controls, and
the corresponding ORs, according to height, weight, BMI at
diagnosis and at different ages are shown in Table 2. An inverse
association with height was observed (OR¼ 0.71; 95% CI:
0.53– 0.95; for women X165 cm tall compared with o160 cm).
Weight and BMI were directly related to endometrial cancer risk;
compared with normal weight women (BMI 20 to o25 kg m!2), the
ORs were 0.56 (95% CI: 0.27–1.15) in women with BMI o20, 1.41
(95% CI: 1.05–1.90) and 4.08 (95% CI: 2.90–5.74) in women with
BMI 25 to o30 and BMI X30, respectively. OR was 1.45
(95% CI: 1.06–1.98) among women who reported to have been

heavier than their peer group at age 12 years. Compared with
BMI 20 to o25, the OR for BMI X30 at age 30 was 1.78 (95% CI:
1.01– 3.14), and 3.37 (95% CI: 2.26–5.04) for BMIX30 at age 50
(Table 2). Decreases from highest BMI by X2 kg m!2 were weakly
associated with reductions in endometrial cancer risk (OR vs no
decrease in BMI during lifetime¼ 0.80; 95% CI: 0.59–1.08), but
the association disappeared by adjustment for BMI at diagnosis

Table 3 Distribution of 454 endometrial cancer cases and 908 controls,
and corresponding odds ratio (OR) with 95% confidence intervals (CIs),a

according to measures of fat distribution,b Italy, 1992–2006

Cases Controls

No. (%) No. No. OR (95% CI)

Waist circumference (cm)
o84 79 (25.7) 221 (37.2) 1c

84–95 101 (32.9) 226 (38.1) 1.22 (0.83–1.79)
X96 127 (41.4) 147 (24.8) 2.68 (1. 78–4.03)

w2 for trend (P-value) 22.51 (Po0.01)

Hip circumference (cm)
o100 87 (28.4) 218 (36.8) 1c

100 to108 96 (31.4) 204 (34.5) 1.35 (0.92–1.98)
X109 123 (40.2) 170 (28.7) 2.49 (1.66–3.72)

w2 for trend (P-value) 18.99 (Po0.01)

Waist-to-hip ratio
o0.833 71 (23.3) 224 (37.8) 1c

0.833 to o0.890 129 (42.2) 177 (29.9) 2.10 (1.43–3.09)
X0.890 106 (34.6) 191 (32.3) 1.33 (0.89–1.97)

w2 for trend (P-value) 1.38 (P¼ 0.24)

Waist-to-height ratio
o0.52 77 (25.1) 237 (40.0) 1c

0.52 to o0.59 101 (32.9) 200 (33.8) 1.66 (1.12–2.46)
X0.59 129 (42.0) 155 (26.1) 3.10 (2.03–4.73)

w2 for trend (P-value) 27.53 (Po0.01)

aORs from conditional logistic regression models, conditioned on age and study
centre, adjusted for year of interview, education, smoking status, age at menarche,
age at menopause, oral contraceptives use, parity, and hormone replacement therapy
use. bThe sum does not add up to the total because of some missing values.
cReference category.

Table 4 Odds ratio (OR) with 95% confidence intervals (CIs)a of 454 endometrial cancer cases (CA) and 908 controls (CO), according to height, waist-
to-hip ratio, and waist-to-height ratio in strata of recent body mass index at diagnosis, Italy, 1992–2006

Body mass index (kg m!2) at diagnosis

o25 25 to o30 X30

CA : CO OR (95% CI) CA : CO OR (95% CI) CA : CO OR (95% CI)

Height (cm)
o160 29 : 103 1b 52 : 102 1b 71 : 53 1b

160–164 42 : 126 1.25 (0.69–2.25) 53 : 110 0.93 (0.56–1.54) 53 : 44 0.97 (0.53–1.79)
X165 55 : 184 1.13 (0.65–1.96) 55 : 139 0.74 (0.44–1.23) 44 : 43 0.69 (0.37–1.30)

Waist-to-hip ratio
o0.833 33 : 135 1b 22 : 70 1b 16 : 19 1b

0.833 to o0.890 29 : 71 1.70 (0.87–3.34) 50 : 78 1.74 (0.88–3.45) 50 : 28 2.95 (1.04–8.39)
X0.890 17 : 60 1.01 (0.49–2.09) 38 : 88 1.11 (0.55–2.25) 51 : 43 1.17 (0.43–3.15)

Waist-to-height ratio
o0.52 55 : 195 1b 22 : 41 1b 0 : 1 0 (—)
0.52 to o0.59 21 : 64 1.68 (0.84–3.36) 59 : 122 0.92 (0.45–1.87) 21 : 14 1b

X0.59 4 : 6 4.69 (0.97–22.76) 29 : 74 0.82 (0.35–1.90) 96 : 75 0.80 (0.31–2.05)

aORs from conditional logistic regression models, conditioned on age and study centre, adjusted for year of interview, education, smoking status, age at menarche, age at
menopause, oral contraceptives use, parity, and hormone replacement therapy use. bReference category.
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Bidimensional exposures and cancer risk: nonadditivity
HEPATOBILIARY MALIGNANCIES

Family History of Liver Cancer and Hepatocellular
Carcinoma

Federica Turati,1,2 Valeria Edefonti,2 Renato Talamini,3 Monica Ferraroni,2 Matteo Malvezzi,1,2,4

Francesca Bravi,1,2 Silvia Franceschi,5 Maurizio Montella,6 Jerry Polesel,3 Antonella Zucchetto,3

Carlo La Vecchia,1,2,7 Eva Negri,1 and Adriano Decarli2,4

Familial clustering of hepatocellular carcinoma (HCC) has been frequently reported in
eastern Asiatic countries, where hepatitis B infection is common. Little is known about the
relationship between family history of liver cancer and HCC in Western populations. We
carried out a case-control study in Italy, involving 229 HCC cases and 431 hospital con-
trols. Data on family history were summarized through a binary indicator (yes/no) and a
family history score (FHscore), considering selected family characteristics. Odds ratios
(ORs) and the corresponding 95% confidence intervals (CIs) were obtained from uncondi-
tional multiple logistic regression models, including terms for age, sex, study center, educa-
tion, tobacco smoking, alcohol drinking, hepatitis B surface antigen, and/or anti–hepatitis
C virus positivity. We also performed a meta-analysis on family history of liver cancer and
liver cancer updated to April 2011 using random-effects models. After adjustment for
chronic infection with hepatitis B/C viruses, family history of liver cancer was associated
with HCC risk, when using both the binary indicator (OR, 2.38; 95% CI, 1.01-5.58) and
the FHscore, with increasing ORs for successive score categories. Compared to subjects
without family history and no chronic infection with hepatitis B/C viruses, the OR for
those exposed to both risk factors was 72.48 (95% CI, 21.92-239.73). In the meta-analy-
sis, based on nine case-control and four cohort studies, for a total of approximately 3,600
liver cancer cases, the pooled relative risk for family history of liver cancer was 2.50 (95%
CI, 2.06-3.03). Conclusion: A family history of liver cancer increases HCC risk, independ-
ently of hepatitis. The combination of family history of liver cancer and hepatitis B/C
serum markers is associated with an over 70-fold elevated HCC risk. (HEPATOLOGY

2012;55:1416-1425)

Liver cancer is a common neoplasm, which ranks
sixth in terms of incidence and third in terms
of mortality worldwide.1 Most of the new

cases and deaths occur in developing countries, partic-
ularly in eastern and southeastern Asia and in sub-
Saharan Africa.2 Among Western countries, southern
Europe shows the highest incidence rates of liver
cancer.1 The relatively high incidence in (southern)
Italy is mostly a consequence of the high prevalence of
hepatitis C virus (HCV) infection in that region.3,4

Hepatocellular carcinoma (HCC) is the most fre-
quent histologic type of primary liver cancer.5 More
than 75% of cases worldwide and 85% of cases in
developing countries have been attributed to hepatitis
B virus (HBV) and HCV, both of which increase the
risk of HCC by approximately 20-fold.6 Other well-
recognized risk factors for HCC are advanced age,
male gender, heavy alcohol drinking, aflatoxin expo-
sure, tobacco smoking, cirrhosis, and some rare mono-
genic syndromes (e.g, haemocromatosis, alpha1-

Abbreviations: chi-square, v2; anti-HCV, antibodies against hepatitis C virus; CI, confidence interval; HBsAg, hepatitis B surface antigen; HBV, hepatitis B
virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; FHscore, family history score; MEIA, microparticle-based enzyme immunoassay; MOOSE, Meta-
analysis Of Observational Studies in Epidemiology; OR, odds ratio; RR, relative risk.
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with HBV/HCV), the ORs were 2.94 (95% CI, 0.94-
9.21) for subjects not chronically infected by hepatitis
viruses and with family history, 38.19 (95% CI,
21.97-66.39) for those with chronic infection with
hepatitis viruses and no family history, and 72.48
(95% CI, 21.92-239.73) for those exposed to both
risk factors. No deviation from multiplicative interac-
tion emerged between these two factors (P ¼ 0.61).
As compared to the minimal-risk category of the

FHscore, ORs associated with successive categories of
the score were 2.64 (95% CI, 0.48-14.47) and 3.23
(95% CI, 0.71-14.73) for subjects without chronic
infection with HBV/HCV and 37.40 (95% CI, 21.50-
65.07), 36.20 (95% CI, 8.82-148.64), and 201.92
(95% CI, 23.22-not estimable) for subjects with
chronic infection with HBV/HCV (data not shown).
No deviation from multiplicative interaction emerged
between the score and chronic infection with HBV/
HCV (P ¼ 0.63).

Table 4 shows the distribution of cases and controls
according to history of other selected cancers in first-
degree relatives and the corresponding ORs. None of

Table 3. ORs of HCC and Corresponding 95% CIs According to Family History of Liver Cancer in First-Degree Relatives*

Cases/Controls
Model 1

OR† (95% CI)
Model 2

OR‡ (95% CI)
Model 3

OR§ (95% CI)

Number of first-degree relatives with liver cancer
All subjects

0 204/412 1k 1k 1k

"1 25/19 2.64 (1.39-5.02) 3.04 (1.57-5.91) 2.38 (1.01-5.58)
Males

0 166/280 1k 1k 1k

"1 17/12 2.19 (0.99-4.81) 2.68 (1.16-6.18) 3.21 (1.13-9.10)
Females

0 38/132 1k 1k 1k

"1 8/7 3.79 (1.25-11.46) 3.69 (1.16-11.72) 1.11 (0.21-5.78)
Type of affected relative
No affected relatives¶ 204/412 1k 1k 1k

Parents 17/8 4.86 (1.99-11.87) 5.58 (2.23-14.00) 6.08 (1.99-18.62)
Siblings 9/11 1.38 (0.55-3.50) 1.60 (0.62-4.18) 0.69 (0.20-2.33)

Age of youngest affected relative#

No affected relatives 204/412 1k 1k 1k

<60 10/11 2.29 (0.93-5.69) 2.72 (1.08-6.90) 1.58 (0.46-5.40)
"60 9/8 2.12 (0.77-5.81) 2.19 (0.79-6.11) 2.18 (0.62-7.72)

Sex of the affected relative**
No affected relatives 204/412 1k 1k 1k

Male 16/10 3.26 (1.41-7.54) 3.28 (1.39-7.71) 2.29 (0.80-6.58)
Female 9/9 1.41 (0.86-2.39) 1.67 (1.00-2.78) 1.59 (0.80-3.14)

Family history of liver cancer using FHscore††

Minimal-risk 204/412 1k 1k 1k

Low-/intermediate-risk 12/10 1.83 (0.75-4.47) 1.89 (0.76-4.72) 1.42 (0.43-4.72)
High-risk 13/9 3.82 (1.56-9.36) 4.91 (1.95-12.33) 3.87 (1.20-12.55)

P value for trend #0.01 #0.01 0.02

*Italy, 1999-2002.
†Estimated from unconditional multiple logistic regression models adjusted for age, sex, and center.
‡Further adjusted for education, alcohol drinking, and smoking habits.
§Further adjusted for HBsAg and/or anti-HCV positivity.
kReference category.
¶One subject reported both a parent and a sibling affected by liver cancer.
#The sum does not add to the total because of some missing values on age at liver cancer diagnosis in first-degree relatives.
**One subject had the mother and a brother affected by liver cancer
††There were two missing values for the FHscore.

Fig. 1. Number of cases and controls, ORs* and 95% CIs of hepa-
tocellular carcinoma according to chronic hepatitis and family history
of liver cancer, measured by the standard method. Italy, 1999-2002.
*Adjusted for age, sex, center, education, alcohol drinking, and smok-
ing habits.
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Bayesian approach is applicable to other epidemiologic scenarios where
continuous exposures in their potential interaction affect disease risk.

Among study limitations, the retrospective study design and the
self-reported smoking history were the most relevant ones. Even if a
large amount of literature has suggested acceptable correlations be-
tween self-reported smoking intensity and cotinine levels in blood or
urine [69], inaccurate self-reporting may occur. Discrepancies between
self-reported and objective information were more likely among long-
term heavy smokers [70]; higher values of intensity and duration were
therefore more prone to inaccurate reporting. Furthermore, smoking
intensity may have varied over time and by age of exposure. However,
its estimates were often based on the self-reported average number of
cigarettes per day; these two aspects may have led to appreciable errors
in measuring the true mean intensity of exposure over one’s lifetime.

These issues may well be serious here, given the continuous nature of
the exposures considered in spline models. To reduce information bias
and residual confounding at the extreme values of the exposure dis-
tributions, we excluded subjects reporting higher (> 95th percentiles)
cigarette intensity and/or duration from the present analysis
[13,15,71]. In addition, to avoid bias due to the use of other tobacco
products, we excluded subjects reporting use of tobacco products other
than cigarettes. We were also obliged to combine different subsites of
OCP cancer, although differences in aetiology (i.e., the causal role of
human papillomavirus in oropharyngeal cancer) have been demon-
strated [34]. However, results were similar for major subsites, although
based on less stable models. Finally, our Bayesian approach was com-
putationally time consuming, asking for several hours of server com-
puting for each model fitted.

A. Oral and pharyngeal cancer 

B. Laryngeal cancer 

Fig. 2. Odds ratiosa,b of oral and pharyngeal cancer and laryngeal cancer in current smokers, for the joint effect of intensity (cigarettes/day) and duration
(years) of cigarette smoking estimated through bivariate spline models. INHANCE consortium. aFitted models included adjustment for age, sex, race, study,
education, drinking status, drinking intensity, and drinking duration. The reference category was defined as ‘‘Never smokers’’. bOn the grid, black thicker lines
represent knot locations: 16 cigarettes/day and 33 years of duration for oral and pharyngeal cancer and 25 cigarettes/day and 30 years of duration for laryngeal
cancer, respectively. Dark grey lines in contour plots (right) indicate iso-risk curves at defined risk levels.
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A R T I C L E I N F O

Keywords:
Bivariate spline models
Cigarette smoking duration
Cigarette smoking intensity
Head and neck cancer
INHANCE
Laryngeal cancer
Oral cavity and pharyngeal cancers

A B S T R A C T

Objectives: This study aimed at re-evaluating the strength and shape of the dose-response relationship between
the combined (or joint) effect of intensity and duration of cigarette smoking and the risk of head and neck cancer
(HNC). We explored this issue considering bivariate spline models, where smoking intensity and duration were
treated as interacting continuous exposures.
Materials and Methods: We pooled individual-level data from 33 case-control studies (18,260 HNC cases and
29,844 controls) participating in the International Head and Neck Cancer Epidemiology (INHANCE) consortium.
In bivariate regression spline models, exposures to cigarette smoking intensity and duration (compared with
never smokers) were modeled as a linear piecewise function within a logistic regression also including potential
confounders. We jointly estimated the optimal knot locations and regression parameters within the Bayesian
framework.
Results: For oral-cavity/pharyngeal (OCP) cancers, an odds ratio (OR)> 5 was reached after 30 years in current
smokers of∼20 or more cigarettes/day. Patterns of OCP cancer risk in current smokers differed across strata of
alcohol intensity. For laryngeal cancer, ORs>20 were found for current smokers of ≥20 cigarettes/day for
≥30 years. In former smokers who quit ≥10 years ago, the ORs were approximately halved for OCP cancers,
and ∼1/3 for laryngeal cancer, as compared to the same levels of intensity and duration in current smokers.
Conclusion: Referring to bivariate spline models, this study better quantified the joint effect of intensity and
duration of cigarette smoking on HNC risk, further stressing the need of smoking cessation policies.
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Multi-dimensional exposures and cancer risk: dietary 
patterns

• Free-living individuals eat meals consisting of a variety of foods 

with complex combinations of interacting nutrients

• Dietary patterns are one or more combined variables 

summarizing multiple interacting dietary components and 

thus capturing the cumulative exposure to different dietary 

components

• Dietary patterns may have stronger effects on 

health/disease risk than any single component



Multi-dimensional exposures and cancer risk: dietary 
patterns/2

a priori approach: dietary patterns are indexes built by
researchers and based on known favourable/adverse
effects of various dietary constituents

examples: Mediterranean diet index, Alternate Healthy
Eating Index, Diversity scores

reduced rank regression (RRR): dietary patterns identified
using both existing knowledge and statistical methods

a posteriori approach: dietary patterns identified using
data driven statistical methods

examples: Principal Component Analysis, Factor
Analysis, Cluster Analysis

dietary pattern 
approach



Multi-dimensional exposures and cancer risk: dietary 
patterns/3

• Compared to one-dimensional a priori DPs, a posteriori DPs 

describe actual dietary behavior

• A continuous score is assigned to each subject representing 

his/her cumulative exposure on one or more profiles that we 

called patterns

• The statistical analysis of the associetion between dietary 

patterns and cancer risk works like if they were single 

nutrients
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Nutrient Dietary Patterns and Gastric Cancer Risk in Italy

Paola Bertuccio,1,2 Valeria Edefonti,2 Francesca Bravi,1,2 Monica Ferraroni,3 Claudio Pelucchi,1

Eva Negri,1 Adriano Decarli,2,4 and Carlo La Vecchia1,2

1Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy; 2Istituto di Statistica Medica e Biometria “Giulio A. Maccacaro,” Università degli
Studi di Milano; 3Dipartimento di Medicina, Chirurgia e Odontoiatria, Università degli Studi di Milano; and 4S.C. Statistica Medica,
Biometria e Bioinformatica, Fondazione IRCSS Istituto Nazionale Tumori di Milano, Milan, Italy

Abstract

Background: There have been several studies on diet
and gastric cancer, but only a few investigations have
considered the role of dietary patterns.
Methods: We investigated gastric cancer risk in relation
to dietary patterns in a case-control study conducted in
northern Italy between 1997 and 2007, including 230 pa-
tients with incident, histologically confirmed gastric
cancer and 547 frequency-matched controls, admitted
to the same hospitals as cases, with acute nonneoplastic
conditions. Dietary habits were investigated through a
validated food frequency questionnaire including 78
foods and beverages. We identified a posteriori dietary
patterns on a selected set of 28 micro- and macro-nutri-
ents through an exploratory principal component factor
analysis. We estimated the odds ratios (OR) and the
corresponding 95% confidence intervals (95% CI) using
conditional logistic regression models on quartiles of
factor scores.

Results: We identified four major dietary patterns,
named “animal products”, “vitamins and fiber”, “vege-
table unsaturated fatty acids”, and “starch-rich”. We ob-
served a positive association between gastric cancer risk
and the “animal products” (OR, 2.13; 95% CI, 1.34-3.40,
for the highest versus the lowest score quartile) and the
“starch-rich” (OR, 1.67; 95% CI, 1.01-2.77) dietary pat-
terns. The “vitamins and fiber” pattern (OR, 0.60; 95%
CI, 0.37-0.99) was inversely associated with gastric can-
cer, whereas no significant association emerged with the
“vegetable unsaturated fatty acids” pattern (OR, 0.89;
95% CI, 0.56-1.42).
Conclusions: Our analysis suggests a protective effect
against gastric cancer risk of dietary patterns rich in
fruits and vegetables, and a positive association of die-
tary patterns rich in meats and animal fats and starchy
foods. (Cancer Epidemiol Biomarkers Prev 2009;18(11):
2882–6)

Introduction

Most studies on diet and gastric cancer have considered
the role of various food items and found inverse relations
with fruit and vegetable consumption and positive asso-
ciations with starchy foods and meats (1-4). Fewer inves-
tigations have considered the role of nutrients and dietary
patterns, although, in the presence of a large number of
possible associations, the integration of several dietary ex-
posures into single dietary patterns may overcome pro-
blems of multiple testing and high correlations between
various dietary exposures. An Italian case-control study
found a significant inverse association between various
measures of food diversity, particularly of vegetables
and fruit diversity, and gastric cancer risk (5). Another
Italian case-control study found a positive association
with the “traditional” pattern (i.e., rich in starch, protein,
alcohol and nitrite) and an inverse association with the
“vitamin-rich” pattern (6). Two prospective studies were
conducted in Japan. The first one found a positive associ-
ation with the “traditional” Japanese pattern (7). The sec-

ond one was an investigation of middle-aged men, which
found a protective effect of the “vegetables and fruit” and
“Western breakfast” patterns (8). With reference to Amer-
ican data, a study from Nebraska found positive associa-
tions between the “high meat” and “milk” patterns and
distal stomach adenocarcinoma (9). A study from Uru-
guay found a positive association with gastric cancer for
the “starchy” factor, whereas the “healthy” and “mixed”
patterns were protective (10). These studies, however, dif-
fer in terms of methods used to define dietary patterns.

To further contribute to the issue, we applied an explor-
atory principal component factor analysis (PCFA) to a
case-control study of gastric cancer conducted in northern
Italy. Previous analyses on the same data found signifi-
cant inverse associations with vitamin E, α-carotene and
β-carotene among micronutrients (11), and with vegetable
fats and polyunsaturated fatty acids among macronutri-
ents (12).

Materials and Methods

Design and Participants. We derived data from a case-
control study of gastric cancer conducted between 1997
and 2007 in the Greater Milan area, Northern Italy (11-
13). Cases were 230 patients (143 men and 87 women; me-
dian age, 63 y; range, 22-80 y), admitted to major teaching
and general hospitals in the study area with incident, his-
tologically confirmed gastric cancer (Ninth Revision of
the International Classification of Diseases: 151.0-151.9),
diagnosed no longer than 1 y before the interview, and
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associated with long-term dietary modifications (e.g., di-
abetes mellitus, cardiovascular diseases, etc.). Other
strengths are the use of a reproducible and valid FFQ
(14, 15) and the similar setting of interviews for cases
and controls, which should limit information bias. With
reference to confounding, we were able to allow for a
large number of potential confounding factors, including
socioeconomic indicators, tobacco, and family history.
We also fitted a model without terms for body mass in-
dex and tobacco, and the main findings were not mate-
rially modified: the ORs for the highest quartile were
2.23 (95% CI, 1.40-3.54) for the “animal products” pat-
tern, 0.61 (95% CI, 0.38-0.99) for the “vitamins and fiber”
pattern, 0.84 (95% CI, 0.53-1.32) for the “VUFA” pattern,
and 1.73 (95% CI, 1.05-2.85) for the “starch-rich” pattern.

Factor analysis is a method that allows to investigate
the relationship between dietary habits and cancer more

comprehensibly than others based on single foods or nu-
trients, accounting for complex forms of interaction be-
tween dietary components. Intake of different foods or
nutrients may interact to increase or decrease cancer risks,
and this interaction may make it difficult to tease out as-
sociations between individual foods and cancers. Limita-
tions of factor analysis arise from subjective decisions
involved in the definition of dietary patterns, including
the number of factors to retain, the type of rotation (if
any), and the interpretation and naming of the factors.
However, in the current study, a series of analyses sug-
gested that the identified set of patterns is both stable
and robust.

In conclusion, our study highlights the protective effect
of the “vitamins and fiber” dietary pattern against gastric
cancer risk, and the positive association of the “animal
products” and “starch-rich” dietary patterns, indicating

Table 2. Factor loading matrix and explained variances for the four major dietary patterns identified by factor
analysis

Nutrient Animal products Vitamins and fiber VUFA Starch-rich

Animal protein 0.80 0.10 0.41 0.23
Vegetable protein 0.15 0.39 0.29 0.80
Cholesterol 0.72 0.07 0.41 0.30
Saturated fatty acids 0.56 0.15 0.50 0.41
Monounsaturated fatty acids 0.20 0.29 0.72 0.28
Linoleic acid 0.19 0.16 0.71 0.33
Linolenic acid 0.33 0.27 0.68 0.34
Other polyunsaturated fatty acids 0.48 −0.02 0.75 −0.04
Soluble carbohydrates 0.40 0.66 0.02 0.17
Starch 0.18 0.11 0.26 0.88
Sodium 0.41 0.06 0.16 0.80
Calcium 0.65 0.34 0.03 0.28
Potassium 0.42 0.76 0.29 0.28
Phosphorus 0.70 0.37 0.31 0.45
Iron 0.42 0.48 0.39 0.37
Zinc 0.63 0.29 0.45 0.47
Thiamin (vitamin B1) 0.53 0.51 0.30 0.45
Riboflavin (vitamin B2) 0.76 0.47 0.10 0.26
Vitamin B6 0.53 0.58 0.41 0.29
Total folate 0.40 0.71 0.22 0.28
Niacin 0.54 0.37 0.47 0.21
Vitamin C 0.12 0.85 0.13 −0.11
Retinol 0.47 0.08 0.03 0.00
β-Carotene equivalents 0.04 0.67 0.20 0.02
Lycopene −0.05 0.26 0.49 0.32
Vitamin D 0.54 0.04 0.54 −0.23
Vitamin E 0.08 0.53 0.74 0.22
Total fiber (Englyst) 0.06 0.85 0.15 0.31

Proportion of explained variances (%) 21.67 20.30 18.02 15.10
Cumulative explained variances (%) 21.67 41.97 59.99 75.09

NOTE: Estimates from a PCFA done on 28 nutrients. Loadings ≥0.63 are shown in boldface.

Table 3. OR of gastric cancer and corresponding 95% CIs on quartiles of factor scores from a PCFA

Dietary pattern Quartile category, OR (95% CI) Ptrend*

I† II III IV

Animal products 1 1.08 (0.64-1.80) 1.47 (0.90-2.40) 2.13 (1.34-3.40) 0.0003
Vitamins and fiber 1 0.84 (0.53-1.32) 1.00 (0.64-1.56) 0.60 (0.37-0.99) 0.0861
VUFA 1 0.84 (0.53-1.34) 0.89 (0.56-1.42) 0.89 (0.56-1.42) 0.7325
Starch-rich 1 1.37 (0.83-2.25) 1.37 (0.82-2.28) 1.67 (1.01-2.77) 0.0463

NOTE: Estimates from a logistic regression model conditioned on age and sex and adjusted for quinquennia of period of interview, education, body mass
index, tobacco smoking, and family history of gastric cancer. Results refer to the composite model including all the four factors simultaneously.
*P value for linear trend.
†Reference category.
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associated with long-term dietary modifications (e.g., di-
abetes mellitus, cardiovascular diseases, etc.). Other
strengths are the use of a reproducible and valid FFQ
(14, 15) and the similar setting of interviews for cases
and controls, which should limit information bias. With
reference to confounding, we were able to allow for a
large number of potential confounding factors, including
socioeconomic indicators, tobacco, and family history.
We also fitted a model without terms for body mass in-
dex and tobacco, and the main findings were not mate-
rially modified: the ORs for the highest quartile were
2.23 (95% CI, 1.40-3.54) for the “animal products” pat-
tern, 0.61 (95% CI, 0.38-0.99) for the “vitamins and fiber”
pattern, 0.84 (95% CI, 0.53-1.32) for the “VUFA” pattern,
and 1.73 (95% CI, 1.05-2.85) for the “starch-rich” pattern.

Factor analysis is a method that allows to investigate
the relationship between dietary habits and cancer more

comprehensibly than others based on single foods or nu-
trients, accounting for complex forms of interaction be-
tween dietary components. Intake of different foods or
nutrients may interact to increase or decrease cancer risks,
and this interaction may make it difficult to tease out as-
sociations between individual foods and cancers. Limita-
tions of factor analysis arise from subjective decisions
involved in the definition of dietary patterns, including
the number of factors to retain, the type of rotation (if
any), and the interpretation and naming of the factors.
However, in the current study, a series of analyses sug-
gested that the identified set of patterns is both stable
and robust.

In conclusion, our study highlights the protective effect
of the “vitamins and fiber” dietary pattern against gastric
cancer risk, and the positive association of the “animal
products” and “starch-rich” dietary patterns, indicating

Table 2. Factor loading matrix and explained variances for the four major dietary patterns identified by factor
analysis

Nutrient Animal products Vitamins and fiber VUFA Starch-rich

Animal protein 0.80 0.10 0.41 0.23
Vegetable protein 0.15 0.39 0.29 0.80
Cholesterol 0.72 0.07 0.41 0.30
Saturated fatty acids 0.56 0.15 0.50 0.41
Monounsaturated fatty acids 0.20 0.29 0.72 0.28
Linoleic acid 0.19 0.16 0.71 0.33
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Vitamin B6 0.53 0.58 0.41 0.29
Total folate 0.40 0.71 0.22 0.28
Niacin 0.54 0.37 0.47 0.21
Vitamin C 0.12 0.85 0.13 −0.11
Retinol 0.47 0.08 0.03 0.00
β-Carotene equivalents 0.04 0.67 0.20 0.02
Lycopene −0.05 0.26 0.49 0.32
Vitamin D 0.54 0.04 0.54 −0.23
Vitamin E 0.08 0.53 0.74 0.22
Total fiber (Englyst) 0.06 0.85 0.15 0.31

Proportion of explained variances (%) 21.67 20.30 18.02 15.10
Cumulative explained variances (%) 21.67 41.97 59.99 75.09

NOTE: Estimates from a PCFA done on 28 nutrients. Loadings ≥0.63 are shown in boldface.

Table 3. OR of gastric cancer and corresponding 95% CIs on quartiles of factor scores from a PCFA

Dietary pattern Quartile category, OR (95% CI) Ptrend*

I† II III IV

Animal products 1 1.08 (0.64-1.80) 1.47 (0.90-2.40) 2.13 (1.34-3.40) 0.0003
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index, tobacco smoking, and family history of gastric cancer. Results refer to the composite model including all the four factors simultaneously.
*P value for linear trend.
†Reference category.
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Multi-dimensional exposures and cancer risk: dietary 
patterns/5

• There is emerging evidence that DPs and disease may have 

nonlinear relations

• Improper specification of models due to 

erroneous/incomplete exposure characterization or 

assumptions can lead to masked or spurious associations 

and biased estimates



Residual confounding

• Dense correlations between dietary components and with 

confounding factors can make it difficult to ascertain the most 

relevant dietary exposures and to address residual confounding

• Even when confounders are appropriately specified in models, 

residual confounding can remain if unspecified 

nonadditivity/nonlinearity is present



Machine learning: the promise

• «Machine learning approaches problems as a doctor progressing 

through residency might: by learning rules from data. Starting with 

patient-level observations, algorithms sift through vast numbers of 

variables, looking for combinations that reliably predict outcomes 

• In one sense, this process is similar to that of traditional regression 

models: there is an outcome, covariates, and a statistical function 

linking the two, but where machine learning shines is in 

handling enormous numbers of predictors and combining 

them in nonlinear and highly interactive ways» (N Engl J Med 

2016; 375: 1216–1219)



Machine learning: the promise/2

• Machine learning may be used in nutritional epidemiology to 

explore: 

• more complex
• numerous dietary variables in models

• and/or

• nonlinear
• nonadditive relations
• between diet, other confounders, and cancer risk



PRIN 2022 – INDACO: objectives

• Explore nonlinearity and nonadditivity of dietary patterns -> cancer 

risk relation by developing novel machine learning (ML)  and 

statistical approaches

• Evaluate the identified cancer risk prediction/classification models 

with 
• previously collected database of Swiss case-control studies on diet and cancer
• newly collected database of middle-aged, healthy university employees from 

Milan and Udine

• Explore ML approaches for image-based dietary assessment

• Transfer results from ML US-based image classification to a newly 

collected pilot study of Italian food images and recipes



PRIN 2022 – INDACO: graphical overview



Machine learning for biomedical data

• Machine learning is a subfield of artificial intelligence where 

profiles are derived from data with little human input

• This contrasts with statistical techniques that rely more on 

human knowledge and emphasize a theoretical approach to 

uncertainty



Statistics and machine learning
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study, McKinney et al. showed the high potential 
of AI for breast cancer screening. However, the 
lack of details of the methods and algorithm 
code undermines its scientific value.”38 The use 

of traditional statistical prediction methods 
alongside interpretable AI methods can contrib-
ute to an understanding of the prediction signal 
and can mitigate nonsensical associations. The 

Opaque
process
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Conclusions are harder 
to reproduce or audit

Can handle very large, 
multimodal, or high-
dimensional data sets

Automated search and extraction of arbitrary, complex, 
task-oriented features to develop prediction algorithm
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judgment

Stable process

Harder to scale to very 
large, multimodal, or 
high-dimensional data sets

Conclusions are 
reproducible, auditable, 
and verifiable
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for prediction
Curation of transformation or standardization methods 
Prespecified analysis strategy

Statisticians, clinicians, 
epidemiologists
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stitute, London (C.H.) — both in the 
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Statistics emerged as a distinct discipline around the beginning 
of the 20th century. During this time, fundamental concepts were developed, 
including the use of randomization in clinical trials, hypothesis testing, 

likelihood-based inference, P values, and Bayesian analysis and decision theory.1,2 
Statistics rapidly became an essential element of the applied sciences, so much so 
that in 2000, the editors of the Journal cited “Application of Statistics to Medicine” 
as one of the 11 most important developments in medical science over the previous 
1000 years.3 Statistics concerns reasoning with incomplete information and the 
rigorous interpretation and communication of scientific findings from data. Sta-
tistics includes determination of the optimal design of experiments and accurate 
quantification of uncertainty regarding conclusions and inferential statements from 
data analysis, expressed through the language of probability.

In the 21st century, artificial intelligence (AI) has emerged as a valuable ap-
proach in data science and a growing influence in medical research,4-6 with an 
accelerating pace of innovation. This development is driven, in part, by the enormous 
expansion in computer power and data availability. However, the very features that 
make AI such a valuable additional tool for data analysis are the same ones that 
make it vulnerable from a statistical perspective. This paradox is particularly per-
tinent for medical science. Techniques that are adequate for targeted advertising 
to voters and consumers or that enhance weather prediction may not meet the rigor-
ous demands of risk prediction or diagnosis in medicine.7,8 In this review article, we 
discuss the statistical challenges in applying AI to biomedical data analysis and the 
delicate balance that researchers face in wishing to learn as much as possible from 
data while ensuring that data-driven conclusions are accurate, robust, and repro-
ducible.

We begin by highlighting a distinguishing feature of AI that makes it such a 
powerful approach while at the same time making it statistically vulnerable. We 
then explore three particular challenges at the interface of statistics and AI that are 
of particular relevance to medical studies: population inference versus prediction, 
generalizability and interpretation of evidence, and stability and statistical guar-
antees. We focus on issues of data analysis and interpretation of findings. Space 
constraints preclude a discussion of the important area of AI and experimental de-
sign or a deep dive into the emerging area of generative AI and medical chatbots; 
however, we comment on this emerging area briefly.

Fe at ur e R epr esen tation Le a r ning

Traditional statistical modeling uses careful hands-on selection of measurements 
and data features to include in an analysis — for example, which covariates to in-
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Obermeyer and colleagues55 describe an AI-
informed algorithm that was applied to a popu-
lation of 200 million persons in the United 
States each year in order to identify patients who 
were at highest risk for incurring substantial 
health care costs and to refer them to “high-risk 
care management programs.” Their analysis sug-
gested that the algorithm unintentionally discrim-
inated against Black patients. The reason appears 
to be that at every level of health care expenditure 
and age, Black patients have more coexisting con-
ditions than White patients do but may access 
health care less frequently. Thus, the algorithm 
with an objective function that set out to predict 
health care utilization on the basis of previous 
costs did not recognize race-related disparities 
in health care needs. In the future, AI algorithms 
may be sufficiently sophisticated to avoid this 
sort of discrimination, but this example illus-
trates both the need for human experts in clini-
cal practice and health care policy to explore the 
consequences of AI applications in these domains 
and the need to carefully specify objective func-
tions for training and evaluation.

S ta bili t y a nd S tatis tic a l 
Gua r a n tees

Medical science is an iterative process of obser-
vation and hypothesis refinement with cycles of 
experimentation, analysis, and conjecture, lead-
ing to further experiments and ultimately toward 
a level of evidence that refutes existing theories 
and supports new therapies, lifestyle recommen-
dations, or both. Analytic methods, including tra-
ditional statistical and AI algorithms, are used to 
enhance the efficiency of this scientific cycle. 
The context and consequences of decisions made 
on the basis of evidence reported in medical stud-
ies carry with them important implications for 
the health of patients.

To a large extent, the concern about prevent-
ing false positive results in conventional medical 
statistics centers on the potential clinical conse-
quences of such results. For example, patients may 
be harmed by the licensing of a drug that has no 
benefit and may have adverse effects. In genetic 
analyses, falsely concluding that a chromosomal 
segment or a genetic variant is associated with a 

Table 1. Similarities and Differences between Artificial Intelligence and Conventional Statistics.

Feature Artificial Intelligence Methods Conventional Statistical Methods

Prior hypotheses Agnostic or very general Specific; often categorized as primary, secondary, and 
exploratory

Techniques (examples) Random forests, neural networks, XGBoost Parametric and nonparametric comparisons between 
groups; regression and survival models with linear 
predictors

Stability (end-to-end) Analyses are more prone to instability and variability 
as a result of application domains (e.g., multimod-
al data integration) and user choices in algorithm 
specification (e.g., architecture in deep learning)

Stable analyses that follow prespecification of a sta-
tistical analysis plan with minimal available user-
defined choices in model specification

Applications Analysis of images, outputs from monitors, massive 
data sets (e.g., electronic health records, natural 
language processing)

Data with a smaller number of predictors, tabular 
data, randomized trials

Purpose Pattern discovery; automatic feature representation; 
feature reduction to a smaller, more manageable 
set; prediction models

Statistical inference and testing of specific factors for 
departure from a null hypothesis, control of con-
founding and ascertainment bias, quantification of 
uncertainty

Reproducibility Often internal (i.e., performed with original data set); 
cross-validation or split samples

Ideally external (i.e., performed with “new” data); for-
mal tests of significance against null hypotheses

Barriers Increasingly, use of proprietary algorithms not avail-
able to other researchers; lack of clarity in reporting

Slow progress in sharing of primary data to allow oth-
ers to check or extend results

Interpretability Often black-box; automatic algorithmic feature engi-
neering introduces opaqueness

Explicit features, clear number of free parameters and 
degrees of freedom

Equity Data-driven feature learning susceptible to biases pres-
ent in data, compounding health inequities

Less flexible, more explicit (interpretable) models, 
which are more easily checked for equity if relevant 
data are available
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Machine learning: feature representation learning

• Feature representation learning - the most impressive and 

distinguishing aspect of machine learning - is its automated 

ability to search and extract arbitrary, complex, task-

oriented features from data

• Features are algorithmically engineered from data during a 

training phase in order to uncover data transformations that are 

correct for the learning task 



Machine learning: feature representation learning/2

• Optimality is measured by means of an “objective function” 

quantifying how well the AI model is performing the task at hand 

• AI models can search through potentially billions of 

nonlinear covariate transformations to reduce a large 

number of variables to a smaller set of task-adapted 

features

• AI algorithms largely remove the need for analysts to 

prespecify features for prediction or manually curate 

transformations of variables



Machine learning: feature representation learning/3

• The trained AI models can engineer data-adaptive features 

that are beyond the scope of features that humans can 

engineer

• Such features can be hard to interpret and lack common 

sense in the use of background knowledge and qualitative 

checks that statisticians bring to bear in deciding on a 

feature set to use in a model 

• AI models are often unable to trace the evidence line from 

data to features, making auditability and verification challenging 



Machine learning spectrum: a continuum of models

• We can imagine an algorithm as existing along a continuum 

between fully human-guided vs fully machine-guided data 

analysis

• To understand the degree to which an algorithm can said to be of 

machine learning requires understanding how much of its 

assumptions (structure or parameters) were predetermined by 

humans

• The trade-off between human specification of properties vs learning 

properties from data is the machine learning spectrum 



Machine learning spectrum: a continuum of models/2

and function mostly as “black boxes.” In contrast, algorithms lower
on the spectrum often produce outputs that are easier for humans
to understand and interpret. Also, the flexibility offered by the high
end of the spectrum requires vast amounts of computational re-
sources must be used to develop and deploy these algorithms.

It is precisely because there is access to much larger sources of
clinical data and faster computers in the last decade that algo-
rithms on the high end of the machine learning spectrum have be-
come practical and useful. Health care data can come from a di-
verse set of sources, including the electronic health care record
(which includes laboratory results, imaging studies, and diagnosis
codes), fitness trackers, genetic testing, among many others.3 At its
core, big data represents an opportunity, and this is especially true
for applications in health care. Machine learning is one such tool to
integrate and make sense of health care data at this scale.

Machine learning is not a magic device that can spin data into
gold, though many news releases would imply that it can. Instead,

it is a natural extension to traditional statistical approaches. Ma-
chine learning is a valuable and increasingly necessary tool for the
modern health care system. Considering the vast amounts of infor-
mation a physician may need to evaluate3—such as the patient’s per-
sonal history, familial diseases, genomic sequences, medications, ac-
tivity on social media, admissions to other hospitals—deriving insight
to guide clinical decision may be an overwhelming task for any one
person. As more control is ceded to algorithms, it is important to note
that these new algorithmic decision-making tools come with no guar-
antees of fairness, equitability, or even veracity. Although we are re-
luctant to repeat the cliché, even with the best machine learning al-
gorithms the maxim of "garbage in, garbage out" remains true.
Whether an algorithm is high or low on the machine learning spec-
trum, best analytic practices must be used to ensure that the end
result is robust and valid. This is especially true in health care be-
cause these algorithms have the potential to affect the lives of mil-
lions of patients.
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Figure. The Axes of Machine Learning and Big Data
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Traditional clinical studies analyze data from hundreds or thousands of patients
using a carefully designed statistical model and thus are low on the machine
learning spectrum. Deep learning models are at the top of the spectrum. At the

very top are generative adversarial networks, which can learn to generate new
images by examining a large database of existing images. See the Supplement
for details including supporting references and expansions of abbreviations.
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Big Data and Machine Learning in Health Care

Nearly all aspects of modern life are in some way being
changed by big data and machine learning. Netflix knows
what movies people like to watch and Google knows
what people want to know based on their search histo-
ries. Indeed, Google has recently begun to replace much
of its existing non–machine learning technology with ma-
chine learning algorithms, and there is great optimism
that these techniques can provide similar improve-
ments across many sectors.

It isnosurprisethenthatmedicineisawashwithclaims
of revolution from the application of machine learning to
big health care data. Recent examples have demonstrated
that big data and machine learning can create algorithms
that perform on par with human physicians.1 Though ma-
chine learning and big data may seem mysterious at first,
they are in fact deeply related to traditional statistical mod-
els that are recognizable to most clinicians. It is our hope
that elucidating these connections will demystify these
techniques and provide a set of reasonable expectations
for the role of machine learning and big data in health care.

Machine learning was originally described as a pro-
gram that learns to perform a task or make a decision au-
tomatically from data, rather than having the behavior ex-
plicitlyprogrammed.However,thisdefinitionisverybroad
and could cover nearly any form of data-driven approach.
For instance, consider the Framingham cardiovascular risk
score,whichassignspointstovariousfactorsandproduces
a number that predicts 10-year cardiovascular risk. Should
this be considered an example of machine learning? The
answer might obviously seem to be no. Closer inspection
oftheFraminghamriskscorerevealsthattheanswermight
not be as obvious as it first seems. The score was originally
created2 by fitting a proportional hazards model to data
frommorethan5300patients,andsothe“rule”wasinfact
learnedentirelyfromdata.Designatingariskscoreasama-
chine learning algorithm might seem a strange notion, but
this example reveals the uncertain nature of the original
definition of machine learning.

It is perhaps more useful to imagine an algorithm as
existing along a continuum between fully human-guided
vs fully machine-guided data analysis. To understand the
degree to which a predictive or diagnostic algorithm can
said to be an instance of machine learning requires under-
standing how much of its structure or parameters were
predetermined by humans. The trade-off between human
specificationofapredictivealgorithm’spropertiesvslearn-
ing those properties from data is what is known as the
machine learning spectrum. Returning to the Framingham
study, to create the original risk score statisticians and
clinical experts worked together to make many important
decisions, such as which variables to include in the model,
therelationshipbetweenthedependentandindependent
variables, and variable transformations and interactions.
Since considerable human effort was used to define these
properties, it would place low on the machine learning

spectrum (#19 in the Figure and Supplement). Many
evidence-based clinical practices are based on a statistical
model of this sort, and so many clinical decisions in fact ex-
ist on the machine learning spectrum (middle left of
Figure). On the extreme low end of the machine learning
spectrum would be heuristics and rules of thumb that do
not directly involve the use of any rules or models explic-
itly derived from data (bottom left of Figure).

Suppose a new cardiovascular risk score is created
that includes possible extensions to the original model.
For example, it could be that risk factors should not be
added but instead should be multiplied or divided, or per-
haps a particularly important risk factor should square
the entire score if it is present. Moreover, if it is not known
in advance which variables will be important, but thou-
sands of individual measurements have been col-
lected, how should a good model be identified from
among the infinite possibilities?

This is precisely what a machine learning algorithm
attempts to do. As humans impose fewer assumptions on
the algorithm, it moves further up the machine learning
spectrum. However, there is never a specific threshold
wherein a model suddenly becomes “machine learning”;
rather, all of these approaches exist along a continuum,
determined by how many human assumptions are placed
onto the algorithm.

An example of an approach high on the machine
learning spectrum has recently emerged in the form of
so-called deep learning models. Deep learning models are
stunningly complex networks of artificial neurons that
were designed expressly to create accurate models di-
rectly from raw data. Researchers recently demon-
strated a deep learning algorithm capable of detecting
diabetic retinopathy (#4 in the Figure, top center) from
retinal photographs at a sensitivity equal to or greater
than that of ophthalmologists.1 This model learned the
diagnosis procedure directly from the raw pixels of
the images with no human intervention outside of a team
of ophthalmologists who annotated each image with the
correct diagnosis. Because they are able to learn the task
with little human instruction or prior assumptions, these
deep learning algorithms rank very high on the ma-
chine learning spectrum (Figure, light blue circles).

Though they require less human guidance, deep
learning algorithms for image recognition require enor-
mous amounts of data to capture the full complexity,
variety, and nuance inherent to real-world images.
Consequently, these algorithms often require hun-
dreds of thousands of examples to extract the salient
image features that are correlated with the outcome of
interest. Higher placement on the machine learning spec-
trum does not imply superiority, because different tasks
require different levels of human involvement. While al-
gorithms high on the spectrum are often very flexible and
can learn many tasks, they are often uninterpretable
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Machine learning spectrum: a continuum of models/3

• When human effort was used to define properties, it would 

place low on the machine learning spectrum (#19)

• High on the machine learning spectrum are deep learning 

models, stunningly complex networks of artificial neurons 

designed to create accurate models directly from raw data (#4)



Machine learning spectrum: a continuum of models/5

• The flexibility offered by the high end of the spectrum requires 

vast amounts of computational resources must be used to 

develop and deploy these algorithms

• While algorithms high on the spectrum are often very flexible, they 

are often uninterpretable and function mostly as “black 

boxes” 

• In contrast, algorithms lower on the spectrum often produce 

outputs that are easier for humans to understand and interpret



Inference–Prediction: a second continuum of models

• Statistics and machine learning models can be posed on a second 

continuum, based on the main motivation of the analysis, 

which can be doing inference or prediction at the extremes

• The inferential regime prioritizes statements about the 

relevance of each individual input variable; the predictive 

regime prioritizes the relevance of the output of the model for 

precise forecasting

• Machine learning is especially well suited to, and largely 

designed for, large-scale prediction tasks



Inference–Prediction: a continuum of models/2

• Inferring new scientific insight is often about answering: which 

input variable within a given dataset is an important 

contributor to the outcome? The investigator is interested in 

understanding the way in which an outcome is affected by a 

change in the input variables 

• Predictive modeling describes what ‘does’ happen, but does 

not equally well address the question of ‘how’ and may be 

less apt for the question of ‘why’



Inference–Prediction: a continuum of models/3

Opinion

Exploration, Inference, and Prediction in
Neuroscience and Biomedicine
Danilo Bzdok1,2,3,*,@ and John P.A. Ioannidis4,5,*

Recent decades have seen dramatic progress in brain research. These advan-
ces were often buttressed by probing single variables to make circumscribed
discoveries, typically through null hypothesis significance testing. New ways
for generating massive data fueled tension between the traditional methodol-
ogy that is used to infer statistically relevant effects in carefully chosen var-
iables, and pattern-learning algorithms that are used to identify predictive
signatures by searching through abundant information. In this article we detail
the antagonistic philosophies behind two quantitative approaches: certifying
robust effects in understandable variables, and evaluating how accurately a
built model can forecast future outcomes. We discourage choosing analytical
tools via categories such as ‘statistics’ or ‘machine learning’. Instead, to
establish reproducible knowledge about the brain, we advocate prioritizing
tools in view of the core motivation of each quantitative analysis: aiming
towards mechanistic insight or optimizing predictive accuracy.

‘[Deep] neural networks are elaborate regression methods aimed solely at prediction, not
estimation or explanation.’ (Efron and Hastie [1], p. 371).

The Emergence of Richer Datasets Alters Everyday Data-Analysis Practices
There is a burgeoning controversy in neuroscience on what data analysis should be about.
Similarly to other biomedical disciplines, there are differing perspectives among researchers,
clinicians, and regulators about the best approaches to make sense of the unprecedented data
resources. Traditional statistical approaches, such as null hypothesis significance testing, were
introduced in a time of data scarcity and have been revisited, revised, or even urged to be
abandoned. Currently, a growing literature advertises predictive pattern-learning algorithms
that are hailed to provide some traction on the data deluge [2,3]. Such tools for algorithmic
predictions are increasingly discussed in particular fields of neuroscience ([4–9] for some
excellent sources). Ensuing friction is aggravated by the incongruent historical trajectories
of mainstream statistics and emerging pattern-learning algorithms – the former long centered
on significance testing procedures to obtain P values, the latter with a stronger heritage in
computer science [10–12]. We argue here that the endeavor of sorting each analytical tool into
categories such as ‘statistics’ or ‘machine-learning’ is futile [13,14].

Take for instance ordinary linear regression, as routinely applied by many neuroscientists. The same
tool and its underlying mathematical prosthetics can be used to achieve three diverging goals ([15],
pp. 82–83; [16], chapter 4.12): (i) exploration, to obtain a first broad impression of the dependencies
between a set of measured variables in the data at hand; (ii) inference, to discern which particular
input variables contribute to the target variable beyond chance level; and (iii) prediction, to enable
statements about how well target variables can be guessed based on data measured in the future.

Highlights
As a prevalent misconception in neu-
roscience and biomedicine, null
hypothesis significance testing is often
thought to be the only existing, or most
rigorous, framework for deriving repro-
ducible conclusions from data.

Data analysis should be guided by the
actual modeling goal. Exploration pro-
vides a first cursory glance that sum-
marizes what can potentially be
interesting in the data at hand. Infer-
ence typically focuses on isolating vari-
ables deemed individually important
above some chance level, often based
on P values. Prediction commonly
aims at identifying variable sets that
together enable accurate guessing of
outcomes based on other or future
data.

P values do not measure the predictive
accuracy of a model. Variables
declared important by null hypothesis
significance testing can be incongru-
ent with the variables that maximize
predictive performance in new indivi-
duals or settings.
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the world’, for prediction. The inferential regime prioritizes statements about the relevance of
each individual input variable. The predictive regime instead prioritizes the relevance of the
output of the model (!) for precise forecasting. Predictive modeling describes what ‘does’
happen. Prediction often does not equally well address the question of ‘how’, and may be less
apt for the question of ‘why’. In addition, prediction is not always feasible and may remain
mediocre in some applications, despite recent technical advances in data analytics. These
considerations encourage trade-offs between model transparency for easy interpretability and
model complexity that would enable predicting particularly complex relationships (Figure 1).
One could make the case that some brain phenomena are so complex that impenetrable
predictive pattern-learning algorithms may be all neuroscientists can hope for (cf [22]). More-
over, accelerating data aggregation and the wider availability of computation power are
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Figure 1. The Trade-Off between Model Transparency, Which Allows Scientific Understanding, and
Theoretical Model Capacity, Which Affords Sophisticated Predictions. Neuroscience and biomedicine have
had a long-dominating focus on scientific insight by using simple and thus transparent models. Such approaches are well
suited to work towards the goal of inference regarding mechanistic understanding. This goal is epistemologically distinct
from, and sometimes practically incompatible with, maximizing predictive power. The pragmatic goal of optimizing
predictive accuracy can exploit large datasets even at the cost of opting for black box models that cannot easily be
interrogated. In practice, the actual ratio between transparency and predictability depends on the specific analytical tool
being used and the particular dataset at hand. Abbreviations: GLM, generalized linear models; LASSO, least absolute
shrinkage and selection operator: a recently introduced constrained regression for high-dimensional data analysis, which
is a special instance of GLM.
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Challenges of machine learning 

• Quantity of input data:
• Machine learning algorithms are highly “data hungry,” often requiring 

millions of observations to reach acceptable performance levels
• It is often difficult to know the optimal sample size for a particular 

prediction-oriented clinical research program beforehand; reasons include 
the unknown complexity of the aspired prediction function, the 
amount of relevant input variables, and noise in the data



Challenges of machine learning/2

• Quality of input data:
• Input data should be unambiguously defined and measured
• In noisy data, advanced pattern-learning algorithms struggle to identify 

reproducible signatures among the measured variables: the more complex 
the predictive model, the higher its susceptibility to random variation

• Biases in data collection can substantially affect both performance 
and generalizability; private companies spend resources to amass high-
quality, unbiased data to feed their algorithms, and existing data in 
electronic health records or claims databases need careful curation 
and processing before they are usable



Challenges of machine learning/3

• Performance evaluation:
• Choosing a measure that is appropriate for the context (e.g..area 

under the ROC curve, specificity, sensitivity) is vitally important, since 
accuracy in one of these measures may not translate to accuracy in another 
and may not relate to a clinically meaningful measure of performance 
or safety

• Prediction performance needs to be better than what can be achieved 
using existing clinical methods for diagnosis and monitoring



Challenges of machine learning/4

• Overfitting and unstable estimates:
• Algorithms might “overfit” predictions to spurious correlations in data
• Multicollinear, correlated predictors could produce unstable estimates 
• Either possibility can lead to overly optimistic estimates of model 

accuracy and exaggerated claims about real-world performance

• Reproducibility and internal validation: overinterpretation?
• The use of regularization and controlled stochastic optimization of 

model parameters during training can help prevent overfitting but 
also means that algorithms have poorly defined notions of statistical 
degrees of freedom and the number of free parameters

• Cross-validation and held-out samples are provided to mimic true out-of-
sample performance, with the trade-off that the amount of data available 
for discovery is reduced



Challenges of machine learning/5

• Generalizability and independent validation: 

overinterpretation?
• Overfitting and unstable estimates must be addressed by testing 

models on truly independent validation data sets, from different 
populations or periods that played no role in model development 

• Problems in the model-fitting stage, whatever their cause, will show 
up as poor performance in the validation stage

• Generalizability to different groups of individuals and different 
ethnicities that did not contribute to model building is important per se



Challenges of machine learning/6

• Causality in observational studies:
• The usual common-sense caveats about confusing correlation with 

causation apply 
• They become even more important as researchers begin including 

millions of variables in statistical models

• Successful predictive models, clinical outcomes and ethics:
• Predictive successes can result in better patient management and 

clinical outcomes as far as effective interventions are available (e.g., 
Alzheimer’s disease)

• The potential for false positive results is increased under machine 
learning approaches unless rigorous procedures to assess the 
reproducibility of findings are incorporated

• New reporting guidelines and recommendations for artificial 
intelligence in medical science have been established to ensure 
greater trust and generalizability of conclusions



Challenges of machine learning/7

• Optimal reporting of information: large scale clinical trials
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Guidelines for clinical trial protocols for interventions involving 
artificial intelligence: the SPIRIT-AI Extension
Samantha Cruz Rivera,1,2 Xiaoxuan Liu,2,3,4,5,6 An-Wen Chan,7 Alastair K Denniston,1,2,3,4,5,8  
Melanie J Calvert,1,2,6,9,10,11 On behalf of the SPIRIT-AI and CONSORT-AI Working Group

The SPIRIT 2013 (The Standard Protocol 
Items: Recommendations for 
Interventional Trials) statement aims to 
improve the completeness of clinical 
trial protocol reporting, by providing 
evidence-based recommendations for 
the minimum set of items to be 
addressed. This guidance has been 
instrumental in promoting transparent 
evaluation of new interventions. More 
recently, there is a growing recognition 
that interventions involving artificial 
intelligence need to undergo rigorous, 
prospective evaluation to demonstrate 
their impact on health outcomes.

The SPIRIT-AI extension is a new 
reporting guideline for clinical trials 
protocols evaluating interventions with 
an AI component. It was developed in 
parallel with its companion statement 
for trial reports: CONSORT-AI. Both 
guidelines were developed using a 
staged consensus process, involving a 
literature review and expert 
consultation to generate 26 candidate 
items, which were consulted on by an 
international multi-stakeholder group 
in a 2-stage Delphi survey (103 
stakeholders), agreed on in a 
consensus meeting (31 stakeholders) 
and refined through a checklist pilot 
(34 participants).

The SPIRIT-AI extension includes 15 
new items, which were considered 
sufficiently important for clinical trial 
protocols of AI interventions. These 
new items should be routinely reported 
in addition to the core SPIRIT 2013 
items. SPIRIT-AI recommends that 

investigators provide clear descriptions 
of the AI intervention, including 
instructions and skills required for use, 
the setting in which the AI intervention 
will be integrated, considerations 
around the handling of input and 
output data, the human-AI interaction 
and analysis of error cases.

SPIRIT-AI will help promote 
transparency and completeness for 
clinical trial protocols for AI 
interventions. Its use will assist editors 
and peer-reviewers, as well as the 
general readership, to understand, 
interpret and critically appraise the 
design and risk of bias for a planned 
clinical trial.

Introduction
A clinical trial protocol is an essential document 
produced by study investigators detailing a priori the 
rationale, proposed methods and plans for how a 
clinical trial will be conducted.1 2 This key document 
is used by external reviewers (funding agencies, 
regulatory bodies, research ethics committees, journal 
editors, peer reviewers and institutional review boards, 
and increasingly the wider public) to understand and 
interpret the rationale, methodological rigor and 
ethical considerations of the trial. Additionally, trial 
protocols provide a shared reference point to support 
the research team in conducting a high-quality study.

Despite their importance, the quality and complete-
ness of published trial protocols are variable.1 2 The 
Standard Protocol Items: Recommendations for Inter-
ventional Trials (SPIRIT) statement was published in 
2013 to provide guidance for the minimum reporting 
content of a clinical trial protocol and has been widely 
endorsed as an international standard.3-5 The SPIRIT 
statement published in 2013 provides minimum 
guidance applicable for all clinical trial interventions, 
but recognises that certain interventions may require 
extension or elaboration of these items.1 2 Artificial 
intelligence (AI) is an area of enormous interest, 
with strong drivers to accelerate new interventions 
through to publication, implementation and market.6 
While AI systems have been researched for some 
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Section Item SPIRIT 2013 Item* SPIRIT-AI item
Addressed 
on page No†

Administrative information

Title 1 Descriptive title identifying the study design, population,  
interventions, and, if applicable, trial acronym

SPIRIT-AI 1(i) 
Elaboration

Indicate that the intervention involves 
artificial intelligence/machine learning 
and specify the type of model.

SPIRIT-AI 1(ii) 
Elaboration

Specify the intended use of the AI 
intervention.

Trial registration 2a Trial identifier and registry name. If not yet registered,  
name of intended registry

2b All items from the World Health Organization Trial Registration Data Set
Protocol version 3 Date and version identifier
Funding 4 Sources and types of financial, material, and other support

Roles and  
responsibilities

5a Names, affiliations, and roles of protocol contributors
5b Name and contact information for the trial sponsor 

5c

Role of study sponsor and funders, if any, in study design; collection, 
management, analysis, and interpretation of data; writing of the report; 
and the decision to submit the report for publication, including whether 
they will have ultimate authority over any of these activities 

5d

Composition, roles, and responsibilities of the coordinating centre, 
steering committee, endpoint adjudication committee, data  
management team, and other individuals or groups overseeing the trial, 
if applicable (see Item 21a for data monitoring committee) 

Introduction

Background and  
rationale

6a
Description of research question and justification for undertaking the  
trial, including summary of relevant studies (published and  
unpublished) examining benefits and harms for each intervention 

SPIRIT-AI 6a (i) 
Extension

Explain the intended use of the AI 
intervention in the context of the 
clinical pathway, including its purpose 
and its intended users (e.g. healthcare 
professionals, patients, public).

SPIRIT-AI 6a (ii) 
Extension

Describe any pre-existing evidence for 
the AI intervention.

6b Explanation for choice of comparators 
Objectives 7 Specific objectives or hypotheses 

Trial design 8
Description of trial design including type of trial (eg, parallel group, 
crossover, factorial, single group), allocation ratio, and framework  
(eg, superiority, equivalence, non-inferiority, exploratory) 

Methods: Participants, interventions, and outcomes

Study setting 9
Description of study settings (eg, community clinic, academic hospital) 
and list of countries where data will be collected. Reference to where list 
of study sites can be obtained 

SPIRIT-AI 9 
Extension

Describe the onsite and offsite  
requirements needed to integrate the AI 
intervention into the trial setting.

Eligibility  
criteria 10

Inclusion and exclusion criteria for participants. If applicable, eligibility 
criteria for study centres and individuals who will perform the  
interventions (eg, surgeons, psychotherapists) 

SPIRIT-AI 10 (i) 
Elaboration

State the inclusion and exclusion  
criteria at the level of participants.

SPIRIT-AI 10 (ii) 
Extension

State the inclusion and exclusion  
criteria at the level of the input data.

Interventions

11a Interventions for each group with sufficient detail to allow replication, 
including how and when they will be administered 

SPIRIT-AI 11a (i) 
Extension

State which version of the AI algorithm 
will be used.

SPIRIT-AI 11a (ii) 
Extension

Specify the procedure for acquiring 
and selecting the input data for the AI 
intervention.

SPIRIT-AI 11a (iii) 
Extension

Specify the procedure for assessing and 
handling poor quality or unavailable 
input data.

SPIRIT-AI 11a (iv) 
Extension

Specify whether there is human-AI inter-
action in the handling of the input data, 
and what level of expertise is required 
for users.

SPIRIT-AI 11a (v) 
Extension

Specify the output of the  
AI intervention.

SPIRIT-AI 11a (vi) 
Extension

Explain the procedure for how the AI 
intervention’s output will contribute to 
decision-making or other elements of 
clinical practice.

11b
Criteria for discontinuing or modifying allocated interventions for a 
given trial participant (eg, drug dose change in response to harms, 
participant request, or improving/worsening disease) 

11c Strategies to improve adherence to intervention protocols, and any procedures 
for monitoring adherence (eg, drug tablet return, laboratory tests) 

11d Relevant concomitant care and interventions that are permitted or 
prohibited during the trial 

Outcomes 12

Primary, secondary, and other outcomes, including the specific measure-
ment variable (eg, systolic blood pressure), analysis metric (eg, change from 
baseline, final value, time to event), method of aggregation (eg, median, 
proportion), and time point for each outcome. Explanation of the clinical 
relevance of chosen efficacy and harm outcomes is strongly recommended 

Table 1 | SPIRIT-AI checklist
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Challenges of machine learning/8

• Optimal reporting of information

Minimum information about clinical artificial intelligence 
modeling: the MI-CLAIM checklist
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Francisco, CA, USA
5Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
6Bayesian Health, New York, NY, USA
7Division of Health Policy and Management, School of Public Health, University of California at 
Berkeley, Berkeley, CA, USA
8Department of Statistics and Department of Electrical Engineering & Computer Science, 
University of California at Berkeley, Berkeley, CA, USA

✉ atul.butte@ucsf.edu. 
Competing interests
I.S.K. is on the scientific advisory boards of Pulse Data and Medaware, both companies involved in predictive analytics. S.S. is a 
founder of, and holds equity in, Bayesian Health. The results of the study discussed in this publication could affect the value of 
Bayesian Health. This arrangement has been reviewed and approved by Johns Hopkins University in accordance with its conflict-of-
interest policies. S.S. is a member of the scientific advisory board for PatientPing. B.K.B.-J. is a cofounder of Salutary, Inc. B.N. is 
employed by Anthem. A.J.B. is a cofounder of and consultant to Personalis and NuMedii; consultant to Samsung, Mango Tree 
Corporation and, in the recent past, 10x Genomics, Helix, Pathway Genomics and Verinata (Illumina); has served on paid advisory 
panels or boards for Geisinger Health, Regenstrief Institute, Gerson Lehman Group, AlphaSights, Covance, Novartis, Genentech, 
Merck and Roche; is a shareholder in Personalis and NuMedii; is a minor shareholder in Apple, Facebook, Google, Microsoft, 10x 
Genomics, Amazon, Biogen, Illumina, Snap, Nuna Health, Royalty Pharma, Sanofi, AstraZeneca, Assay Depot, Vet24seven, 
Regeneron, Moderna and Sutro, many of which use AI and predictive modeling, and several other non-health-related companies and 
mutual funds; and has received honoraria and travel reimbursement for invited talks from Genentech, Takeda, Varian, Roche, Pfizer, 
Merck, Lilly, Mars, Siemens, Optum, Abbott, Celgene, AstraZeneca, AbbVie, Johnson & Johnson, Westat and many academic 
institutions, state or national agencies, medical or disease specific foundations and associations, and health systems. A.J.B. receives 
royalty payments through Stanford University for several patents and other disclosures licensed to NuMedii and Personalis. A.J.B. has 
research funded by the NIH, Northrup Grumman (as the prime on an NIH contract), Genentech, Johnson & Johnson, FDA, US 
Department of Defense, Robert Wood Johnson Foundation, Leon Lowenstein Foundation, Intervalien Foundation, Priscilla Chan and 
Mark Zuckerberg, Barbara and Gerson Bakar Foundation and, in the recent past, the March of Dimes, Juvenile Diabetes Research 
Foundation, California Governor’s Office of Planning and Research, California Institute for Regenerative Medicine, L’Oreal and 
Progenity.
Code availability
A public Github repository (https://github.com/beaunorgeot/MI-CLAIM) has been set up to coincide with the release of this 
manuscript, which will allow the community to comment on existing sections and suggest additions.
Here we present the mI-CLAIm checklist, a tool intended to improve transparent reporting of AI algorithms in medicine.

HHS Public Access
Author manuscript
Nat Med. Author manuscript; available in PMC 2020 October 06.

Published in final edited form as:
Nat Med. 2020 September ; 26(9): 1320–1324. doi:10.1038/s41591-020-1041-y.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript

Fig. 1 |. 
A schematic representation of the six components of a clinical AI study.
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General conclusions/1

• Much of the skills of a trained statistician/epidemiologist 

involve factors that cannot be captured by data-driven 

artificial intelligence algorithms

• Bringing these skills within a “human-in-the-loop” 

development (in which artificial intelligence supports and assists 

expert human judgment) will highlight gaps to be addressed

• Human experts should be useful in carefully specifying 

objective functions for training and evaluation and exploring 

the consequences of the applications of machine learning



General conclusions/2

• As more control is ceded to algorithms, it is important to note that 

these new algorithmic decision-making tools come with no 

guarantees of fairness, equitability, or even veracity

• Even with the best machine learning algorithms the maxim of 

"garbage in, garbage out" remains true 

• Whether an algorithm is high/low on the machine learning 

spectrum, best analytic practices must be used to ensure that the 

end result is robust and valid



General conclusions/3

• The checking of artificial intelligence-supported findings is 

particularly important in the emerging field of generative 

artificial intelligence through self-supervised learning, such 

as large language models and medical science chatbots that may 

be used for medical note taking in electronic health records

• Researchers should find that delicate balance between wishing to 

learn as much as possible from data while ensuring that data-

driven conclusions are accurate, robust, and reproducible



General conclusions/4

• Although intellectual property rights for commercial artificial 

intelligence products may exist, practices that medical scientists 

should pay careful attention to in planning machine learning 

studies include releasing all code and providing clear 

statements on model fitting and held-out data used for 

reporting of accuracy so as to facilitate external assessment 

of the reproducibility of findings


